Replicate in 8 steps

Replicate in 8 steps

Trigger the flow

Authenticate

Extract Access token

Assign Variables

Do Until Loop

Execute the Query

Parse the results
Create/Replicate the data item

O N GRAWNPE

-Services and solutions are available and potential options
-Build flows to replicate you data

-Trigger from a button

-Trigger from a cloud event

How can you replicate data from a cloud system? A new matter has just been created upstream,
and you need to automate insert the row/details more local to your organization for reporting
purposes or building custom flows where the data needs to reside closer to home.

Power Automate can accomplish. -Concerned about processing 100s,1000s,10,000s, 100,000s of
rows? -PowerAutomate can handle this. -SharePoint can handle this.

Recently, | was engaged for a flow to accommodate such a scenario. To process 100,000 rows
did take about two hours to replicate, create the storage item (in SharePoint) and perform
additional tasks. But batches of 5000 rows happens pretty quick. -Moreover, after you have your
initial load, processing this many rows moving forward should not be a requirement. Afterall,
you are only looking for your delta or net new rows.



Replicate data with a few steps. Query with
an HTTP step/operation, and iterate those

e l S rows until a condition a met. Also, you could
A execute the query until a ‘Do Until” loop is
! executed.
AccessToken @ ---
LY Varicble Mattindex ®
Variable TempMattindex @ -
A
{x} R @ -

......

. ~
. !
o
§
2
b1
a
@

N Do until

Sometimes, your data is stored in the cloud but needs to be accessed in other locations. For
example, let’s say you're working with a matter management system that stores data in the
cloud, but you need to replicate this data to a SharePoint list or SQL table for reporting or
external analysis. When building extensions, apps, or flows, having replicated data in an
easily accessible location, like SharePoint or SQL, can help streamline those processes.
Additionally, when you want to create custom reports with tools like SSRS or Microsoft
Access, replicating that data becomes the ideal solution to centralize the needed
information.

Why Replicating Data Is a Great Option (with use cases)

1. Custom Reporting: Replicating data into SharePoint or SQL allows the use of advanced
reporting tools such as SSRS, which may require a local dataset to function efficiently.

2. Cross-System Integration: Many times, external applications or services need access to
your data. By replicating the data to a SQL table, third-party integrations can read this
data without directly querying your cloud system, which reduces system load.

3. Data Archiving: Cloud data can change frequently, and sometimes you need to retain a
snapshot of data at a certain time. Replicating this data into a local or on-premise system
(like SharePoint or SQL) ensures that you have a copy to reference at a later point.



Summary of Steps

Here’s how you can build your Power Automate flow to replicate data. Get ready,
because it's going to be fast-paced and effective! You’ll create a seamless connection
between your cloud system and the data repository of your choice, looping through
records with precision until the work is done.

In this setup, we'll be querying data, looping through batches, and inserting them into
your chosen storage. Let's dive in and get that replication flow up and running in no time!

Step-by-Step Guide for the Power Automate Flow:

1.
2.

3.

Trigger the Flow: Start by triggering the flow from a button or Power App.
Authenticate: Use an API connector or HTTP request to authenticate to the
system. Make sure you store the authentication token securely.
Save Values: Initialize and save the values needed, such as counters and the
starting index of the data (e.g., the starting matter index).
First Query: Make your first query using the HTTP action to retrieve the first
batch of records based on the @odata.nextlink. The response will contain the next
link for fetching additional records.
Create a Do Until Loop:
o Inside this loop, execute the query to retrieve batches of matters starting
with the saved matter index.
o Store the next link (OData.NextLink) for each iteration.
Increment: Continue querying and incrementing the matter index or checking the
next link value until the end is reached (OData.NextLink is null).
Parse Data: Use a schema to extract the values needed from each record.
o Let the flow fail once during setup, then copy and paste the schema
generated from Power Automate for easy parsing.
Save Data: Loop through each record and store the desired fields in your
preferred data storage, such as a SharePoint list or SQL table.

How to Create a SharePoint Hidden List:

el N

Navigate to your SharePoint site.

Click on Site Contents > New > L.ist.

Name your list, then click on List Settings.

Under Advanced Settings, set the list to Hidden. This will ensure it doesn’t appear in
the site navigation but is still accessible to your flows.



Begin the workshop
From make.powerautomate.com
Create a new flow

Power Automate

Mew flow ~ < Import

-+ New flow ~ <1 Import

Start from a template

=8 Templats

# Visio template

Build your own from blank
o™ Automated cloud flow
% Instant cloud flow

T scheduled cloud flow
{(*> Describe it to design it

';'m Desktop flow

Select “manual trigger a flow” if you want to run
from the flow itself. Alternatively, if you are building a “Power App” select the Power Apps
option.

Choose how to trigger this flow *

u Manually trigger a flow —
Flow button for mobile ~
When Power Apps calls a flow (V2) —_
Power Apps ~



P!
L= )
Lty

¢1¢ Power Apps (V2]

1. Trigger the Flow

Create step to run the flow.

Click the PLUS on the canvas to add new steps.

o
Lr=d )
Lty

0‘1‘ Power Apps (V2)

2. Authenticate
Best Practice: Save these items in a SharePoint hidden list or environment variable.

Create a step with the “HTTP” action request

Click on the “+” and type “HTTP”. Select the operation from the list.

VoAl Power Apps (V2) @
+
T Add an action
@ Authenticate @
= Add a parallel branch

N

Choose from the source to integrate. This is your list of Powe Automate connectors which
provides “integration” to many systems.



Choose an operation

‘ /'D Search connectors and actions

All Built-in Standard Premium  Custom My clipboard

EEEOD0ED

Control Al Builder Desktop Excel Online MSN Mail Microsoft
flows (Business) Weather Dataverse

NOTE: here is a quick short list of connectors you might implement.

-Actions or events you might take with Elite 3E
‘Packaged webhooks/APIs you can implement

@ 3E Bvents @

6 Search connectors and actions

Triggers  Actions

E Delete 3E Templates document | PREMIUM

2E Events

E Download 3E Templates document | PREMIUM

3E Events

Get 3E Templates document metadata | PREMIUM

3E Events




d8 0008 A

Microsoft SharePaint Office 365 Office 365 HTTP With HTTP with
Teams Qutlook Users Microsoft... Microsoft...
Tribal Tribal - SITS Tribal - LMS363 Conwverter by Office 365

Maytas Power2Apps Groups
2 S
o
Office 365 Azure COpenlegacy Openlegacy |A-Connect Content Onelrive for
Groups Mail Cevlps IBM | (AS400) IBM... Session Maoderator Business
http garden Blackbaud Salesforce Mailinator Plumsail Cloudmersiv
(Independe...  5KY Add-ins Documents e Data...
< 5 X
AP Key =/ “I~
Encodian Encodian - Encodian - Encodian - PDF4me SignatureAP| Egnyte
Convert Image Utilities Connect
a r r l =
] v

Encodian - Encodian - Encodian - PDFdme ID Analyzer  Assently E-

Barcode PDF Excel Sign Brann’

‘iManage

=]

iManage iManage iManage iManage
Work Tracker Work for..  Insight Plus

Get permissions | PREMIUM

iManage Work

. Move document | PREMIUM

iManage Waork

iManage Work

Get document profile | PREMIUM

iManage Work

- Update current or create new document version | PREMIUM

iManage Waork

Get user details | PREMIUM

iManage Work

. Get document versions | PREMIUM



[

. Get workspace profile | PREMIUM

iManage Work

[

- Get core extended metadata properties of a document | PREMIUM

iManage Work

. Add document reference | PREMIUM

iManage Work

[

- Copy document | PREMIUM

iManage Work

Update permissions | PREMIUM

ol i/ anage Waork

For your flow, select the standard “HTTP” request.

%
HTTP @ X
‘ ( Search connectors and actions
Triggers Actions See more
HTTP | PREMIUM
Q ®
HTTP
{} HTTP + Swagger o
HTTP
B HTTP Webhook [ PREMIUM o
HTTP

Select “HTTP” from this option.

Configure the step as follows:
Prerequisites: before you can build this flow, precept information will be required.

1. 3E Instance ID
2. API permissions
3. Credentials



a Authenticate @

*Method | POST W ‘
*UR | htips://login.microsoftonline.com/ <id= joauth2/v2.0/token ‘
Headers Content-Type application/x-vwww-form-urlenc | X m
oded

¥-3E-InstancelD <instanceld > X

Enter key Enter value
Queries Enter key Enter value m
Body grant_type=client_credentials

&client_id=«clientlD=>

&client_secret=<secretvalues

&Scope=<systemscopeurl=

Cockie Enter HTTP cookie

Show advanced options ™

3. Extract the token
Add a data operation step for “Parse JSON” —(not this JASON)

Parse the returned results and extract the token. You will need the token to execute the query in
the next step. From the Body of the response, you need to extract the token.



AN AccessToken ®

*Content E Body x

*Schema 1

"type": "object”,
"properties”: {
"access_token": {
"type": "string”

Ta
"scope": {

"type": "string"”
s

"expires_in": {

Generate from sample

4. Initialize Starting Point
Initialize and save values for counters and the starting matter index.

Using the step create a variable.

'
{.1} Initialize variable @
“Mame TotalRowsProcessed
*Type nteger v
Value 5

@Odata.NextLink

Create a variable to save the OData.Next link.

WIN FOR THE CLOUD: Returned instructions for finding the next batch of records
data/CostCard?$skip=1000&$top=1000&$count=true&$orderby=costindex%20asc&$filter=IsHa
rdCost%20eq%20true&$select=*,CostIndex,Currency,Matter,CostType



Compose
Save the NextOData link.

Create a variable using the data operation, “Compose” to store the JSON variable.

{I} Compose @

*Inputs MNextlink =

5. Do Until Condition is satisfied
Inside the “Do Until” add an apply each loop control.

Do this until the matter index reaches your threshold limit. (5000).
Steps for Do Until Conditions:
Using Mattindex Greater than a Variable:

1. Inside the Do Until loop, set the condition as:
Mattindex <= {your upper limit variable}

2. For each iteration, update the MattIndex by adding the batch size (e.g., increment by
5000).

3. Continue processing until Mattindex exceeds the upper limit.
Using OData.NextLink is Null:

1. Inside the Do Until loop, set the condition as:
OData.NextLink !'=null

2. Query the data and store the OData.NextLink in a variable.

3. For each iteration, execute the query using the saved next link and update the variable
with the new OData.NextLink.

4. Continue until the next link is null, indicating the end of the data.
Inside the Do Until loop:
Execute a query to find the batch of matters greater than your starting matter index.

Create a step with the Do Until action.



Do until

6. Execute the query

‘S‘ EliteQuery

*Method

*URI

Headers

Queries

Body

Cookie

@ boo
| GET y |
| <haseserviceur! = Matter? |

Authorization Bearer i
m access_token x

X-3E-InstancelDd <yourinstanceid> X

Enter key Enter value

Sselect Mattindex, Number, DisplayNam | % @
e, Client, MattSiatus OpenDate,O
penTkpr, MatterAdditionalinfor
mations($5alect=Code Fie'dVval
ugifilter=Code eqg 451),MatiDa
tes(iselect=EffStart PracticeGra
up,Cepartment, Section, Bill Tkpor,
RspTkpr, SpyTkpr)

Sexpand Client1{$5elect=Number Displa | X
yMame)

Sfilter Mattindex gt X
' mattindex x

Sorderby Mattindex asc X

Stop 5000 x

Enter key Enter value

Enter request content

| Enter HTTP cookie

Show advanced options ™~

7. Parse the Results



{é’} ParseMatter

Format a schema to extract the field values.

Sample of a matter schema:
{

"properties™: {
"@@odata.context": {
"type": "string"
1
"@@odata.count"; {
"type": "integer"
+
"value": {
"type": "array",
"items": {
"type": "object",
"properties": {
"Mattindex": {
"type": "integer"
}
"Number": {
"type™: "string"
}
"DisplayName": {
“type": “string"
+
"Client": {
"type": "integer"
+
"MattDates": {
"type": "array",
"items": {

"properties”: {
"BillTkpr": {
"type": "integer"

()



"MatterAdditionalInformations": {

"type": "array",
"items™: {

"properties™; {

"MatterAdditionalInformationID"; {
“type": "string"

+

"Code": {
"type": "integer"

}

"FieldName": {
"type": “integer"

1

"FieldValue": {
"type": "string"

1

"Matterld": {
"type": "integer"

}
}
"Client1": {

"properties": {
"Number": {

}
"DisplayName": {
"type": "string"
}
}

}

"required™: [
"Mattindex",
"Number",
"DisplayName",
"Client"

1

}
}
"@@odata.nextLink": {
"type": "string"



Provide a schema: Power Automate will generate this in the HTTP query step. Let your flow fail
intentionally so you can copy and paste the schema— a nice hack.

ParseMatter :i'

*Content E Body =

*Sehema 1
"type": "object”,
"properties": {
"E@odata.context": {
"type": “string"
}J
"EB@odata.count”™: {
"type": "integer”
Ts

"walue™: {

Generate from sample

8. Replicate the data

Inside the “Do Until” loop create an apply each.
-New Step, create an “Apply to Each” step.

Inside the apply each loop (which is iterating all of the rows). Loop through all of the matters
returned from the query. Example provided batches 5000 rows. Start with your initial index.
You will increment the matter index number. The query is dynamic to start with the matter index
and increase the threshold.



- Inside the apply each loop (which is
iterating all of the rows). Loop through

Apply ta each

wiput from previous steps

g B

— all of the matters returned from the
ﬂ Cresteiem @ o query. Example provided batches 5000
o] rows. Start with your initial index.
R oo You will increment the matter index
o 4 o number. The query is dynamic to start
with the matter index and increase the
threshold.

Add a step “SharePoint, create item”

n Create item C

Instead of creating items in a SharePoint list, insert rows into a SQL table, data warehouse, or
preferred data storage.

(=)

plaintext

Title: @{items('Apply to Each')?['DisplayName']}
MatterIndex: @{items('Apply to Fach')?['MattIndex']}
ClientMumber: @{items('Apply_to Each')?['Client1']?[ 'Number']}

ClientName: @{items('Apply to Each')?["Client1']?[ 'DisplayMName']}

Extract the desired fields using syntax as follows:

Title: @{items('Apply_to_Each')?['DisplayName]}

Matterindex : @{items('Apply_to_Each")?['MattIndex]}
ClientNumber : @{items('Apply_to_Each")?['Client1']?['Number]}
ClientName: @{items('Apply_to_Each’)?['Client1']?['DisplayName']}



